9 research outputs found

    Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks

    Full text link
    A Magnetic Resonance Imaging (MRI) exam typically consists of the acquisition of multiple MR pulse sequences, which are required for a reliable diagnosis. Each sequence can be parameterized through multiple acquisition parameters affecting MR image contrast, signal-to-noise ratio, resolution, or scan time. With the rise of generative deep learning models, approaches for the synthesis of MR images are developed to either synthesize additional MR contrasts, generate synthetic data, or augment existing data for AI training. However, current generative approaches for the synthesis of MR images are only trained on images with a specific set of acquisition parameter values, limiting the clinical value of these methods as various sets of acquisition parameter settings are used in clinical practice. Therefore, we trained a generative adversarial network (GAN) to generate synthetic MR knee images conditioned on various acquisition parameters (repetition time, echo time, image orientation). This approach enables us to synthesize MR images with adjustable image contrast. In a visual Turing test, two experts mislabeled 40.5% of real and synthetic MR images, demonstrating that the image quality of the generated synthetic and real MR images is comparable. This work can support radiologists and technologists during the parameterization of MR sequences by previewing the yielded MR contrast, can serve as a valuable tool for radiology training, and can be used for customized data generation to support AI training

    System Design for a Data-driven and Explainable Customer Sentiment Monitor

    Full text link
    The most important goal of customer services is to keep the customer satisfied. However, service resources are always limited and must be prioritized. Therefore, it is important to identify customers who potentially become unsatisfied and might lead to escalations. Today this prioritization of customers is often done manually. Data science on IoT data (esp. log data) for machine health monitoring, as well as analytics on enterprise data for customer relationship management (CRM) have mainly been researched and applied independently. In this paper, we present a framework for a data-driven decision support system which combines IoT and enterprise data to model customer sentiment. Such decision support systems can help to prioritize customers and service resources to effectively troubleshoot problems or even avoid them. The framework is applied in a real-world case study with a major medical device manufacturer. This includes a fully automated and interpretable machine learning pipeline designed to meet the requirements defined with domain experts and end users. The overall framework is currently deployed, learns and evaluates predictive models from terabytes of IoT and enterprise data to actively monitor the customer sentiment for a fleet of thousands of high-end medical devices. Furthermore, we provide an anonymized industrial benchmark dataset for the research community

    Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies

    Get PDF
    Item does not contain fulltextOBJECTIVES: To evaluate the accuracy and speed of a novel robotic technique as an aid to perform magnetic resonance image (MRI)-guided prostate biopsies on patients with cancer suspicious regions. METHODS: A pneumatic controlled MR-compatible manipulator with 5 degrees of freedom was developed in-house to guide biopsies under real-time imaging. From 13 consecutive biopsy procedures, the targeting error, biopsy error and target displacement were calculated to evaluate the accuracy. The time was recorded to evaluate manipulation and procedure time. RESULTS: The robotic and manual techniques demonstrated comparable results regarding mean targeting error (5.7 vs 5.8 mm, respectively) and mean target displacement (6.6 vs 6.0 mm, respectively). The mean biopsy error was larger (6.5 vs 4.4 mm) when using the robotic technique, although not significant. Mean procedure and manipulation time were 76 min and 6 min, respectively using the robotic technique and 61 and 8 min with the manual technique. CONCLUSIONS: Although comparable results regarding accuracy and speed were found, the extended technical effort of the robotic technique make the manual technique - currently - more suitable to perform MRI-guided biopsies. Furthermore, this study provided a better insight in displacement of the target during in vivo biopsy procedures.01 februari 201

    Digital products and processes in dental technology

    No full text
    Following the VDMA guideline Industry 4.0 potential ways towards digitalization of production are illustrated using an example from dental technology. The special feature in medical engineering is the responsibility of the physician, particularly in the context of custom-made products. Data security, integrity, and traceability is mandatory in digital processes when responsibility is switching between parties, e.g. dental laboratory / practice. This article illustrates how those requirements can be met

    MR-contrast-aware image-to-image translations with generative adversarial networks

    No full text
    Purpose!#!A magnetic resonance imaging (MRI) exam typically consists of several sequences that yield different image contrasts. Each sequence is parameterized through multiple acquisition parameters that influence image contrast, signal-to-noise ratio, acquisition time, and/or resolution. Depending on the clinical indication, different contrasts are required by the radiologist to make a diagnosis. As MR sequence acquisition is time consuming and acquired images may be corrupted due to motion, a method to synthesize MR images with adjustable contrast properties is required.!##!Methods!#!Therefore, we trained an image-to-image generative adversarial network conditioned on the MR acquisition parameters repetition time and echo time. Our approach is motivated by style transfer networks, whereas the 'style' for an image is explicitly given in our case, as it is determined by the MR acquisition parameters our network is conditioned on.!##!Results!#!This enables us to synthesize MR images with adjustable image contrast. We evaluated our approach on the fastMRI dataset, a large set of publicly available MR knee images, and show that our method outperforms a benchmark pix2pix approach in the translation of non-fat-saturated MR images to fat-saturated images. Our approach yields a peak signal-to-noise ratio and structural similarity of 24.48 and 0.66, surpassing the pix2pix benchmark model significantly.!##!Conclusion!#!Our model is the first that enables fine-tuned contrast synthesis, which can be used to synthesize missing MR-contrasts or as a data augmentation technique for AI training in MRI. It can also be used as basis for other image-to-image translation tasks within medical imaging, e.g., to enhance intermodality translation (MRI → CT) or 7 T image synthesis from 3 T MR images

    Automated Billing Code Retrieval from MRI Scanner Log Data.

    Get PDF
    Although the level of digitalization and automation steadily increases in radiology, billing coding for magnetic resonance imaging (MRI) exams in the radiology department is still based on manual input from the technologist. After the exam completion, the technologist enters the corresponding exam codes that are associated with billing codes in the radiology information system. Moreover, additional billing codes are added or removed, depending on the performed procedure. This workflow is time-consuming and we showed that billing codes reported by the technologists contain errors. The coding workflow can benefit from an automated system, and thus a prediction model for automated assignment of billing codes for MRI exams based on MRI log data is developed in this work. To the best of our knowledge, it is the first attempt to focus on the prediction of billing codes from modality log data. MRI log data provide a variety of information, including the set of executed MR sequences, MR scanner table movements, and given a contrast medium. MR sequence names are standardized using a heuristic approach and incorporated into the features for the prediction. The prediction model is trained on 9754 MRI exams and tested on 1 month of log data (423 MRI exams) from two MRI scanners of the radiology site for the Swiss medical tariffication system Tarmed. The developed model, an ensemble of classifier chains with multilayer perceptron as a base classifier, predicts medical billing codes for MRI exams with a micro-averaged F1-score of 97.8% (recall 98.1%, precision 97.5%). Manual coding reaches a micro-averaged F1-score of 98.1% (recall 97.4%, precision 98.8%). Thus, the performance of automated coding is close to human performance. Integrated into the clinical environment, this work has the potential to free the technologist from a non-value adding an administrative task, therefore enhance the MRI workflow, and prevent coding errors

    Fast 3-T MR-guided transrectal prostate biopsy using an in-room tablet device for needle guide alignment: a feasibility study

    Get PDF
    Contains fulltext : 196610.pdf (publisher's version ) (Open Access
    corecore